Overview of Hydrogen Technology

Presentation to Strathcona County July 9, 2024

Emissions Reduction Alberta (ERA) and Transition Accelerator

About ERA

- Mandate: Reduce GHG emissions and grow Alberta's economy by accelerating the development and adoption of innovative technology solutions
- Supported by the Government of Alberta TIER fund
- Almost \$1 billion invested to date across >250 innovation projects:
 - 1:1 private funds matching (nearly \$9 billion total project value)
 - Competitive, two-stage, independent funding process
 - Approximately \$100 million invested in hydrogen technologies to date

The Transition Accelerator is a pan-Canadian organization that works with others to solve challenges through positive, transformational system change.

We're helping to ensure Canada builds a prosperous and economically competitive future by identifying and advancing viable pathways that lead to net-zero greenhouse gas emissions by 2050.

Agenda

- Overview what is hydrogen?
- Hydrogen production
- Hydrogen distribution
- Hydrogen end-use
- Global context
- Questions

Overview: hydrogen's role in the energy system

- Hydrogen is likely a necessary part of a net-zero energy system
 - ➤ Some regions <5%, some regions >20%—there is no consensus
- Hydrogen is an energy <u>carrier</u>, not a primary energy source
 - > Typically, must be made, and then converted into energy to be useful
 - Can occur in nature in the form of water or hydrocarbons
- Hydrogen is a gaseous fuel similar but different to natural gas
 - For some applications, hydrogen is a promising way to transition to net zero.

What is hydrogen?

- Most abundant element in the universe
- Almost always attached to other elements (i.e. water, hydrocarbons)
- Physical characteristics:
 - Gas at atmospheric conditions
 - High energy density by mass
 - Low energy density by volume
 - Colourless, odorless, non-toxic, combustible, explosive
 - Burns with a transparent flame
- Think of hydrogen as a fuel, similar to gasoline or diesel, but without the carbon

How is hydrogen used?

- Industrial chemical reactions:
 - Petrochemical production
 - Hydrocarbon refining
 - Fertilizer production
 - Steelmaking
- As a fuel to make energy:
 - Combustion
 - Converted to electricity via a fuel cell

Physical properties of hydrogen, carriers, and incumbents

Fuel type	Storage requirements
Gasoline	Liquid at atm
Natural gas	Liquid at -163 °C or gas at 200 bar
Hydrogen	Liquid at -252 °C or gas at 300 bar
Ammonia (NH ₃)	Liquid at -33 °C
Methanol (CH ₃ OH)	Liquid at atm

Hydrogen production

How is hydrogen produced?

Most common methods

- 1. Methane reforming
- 2. Water Electrolysis

Other methods

- Chemical plant by-product
- Biomass gasification
- Methane pyrolysis

1. Methane reforming*

2. Water electrolysis

^{*} There are multiple reforming methods at various Technology Readiness Levels, some involving more water, less water, no water, no oxygen, producing solid carbon instead of CO₂, etc.

Natural gas reforming

- **Inputs:** natural gas, heat, electricity, water
- Outputs: hydrogen, CO₂
- SMR vs ATR:
 - ATR is more electrically dependent
 - ATR is easier to capture
 CO2 from

Source: Pembina Institute

Air Products' World-Scale Net-Zero **Hydrogen Energy Complex** Air Products Alberta Heartland H₂ Pipeline for H₂ Customer Supply 95% Captured CO_2 for Sequestration H₂ Plant Alberta Natural Gas Net-Zero H₂ Plant Hydrogen H₂ Plants 55-kilometer pipeline (future) Envision >1,500 MTPD of production H₂ Plant Oxygen Liquid Hydrogen for Merchant LHY **ASU** Market and H₂fM 0000 H₂ Power Plant (30 MTPD) Power for Export LOX LHY - liquid hydrogen CO2 - carbon dioxide for Merchant Market LIN - liquid nitrogen

H₂ – hydrogen

Electrolysis

Newer Hydrogen Production Method
No Greenhouse Gas Pollution

- Inputs: electricity, water
- Outputs: hydrogen, oxygen

Lifecycle analysis of GHG intensity - example

- ATR+CCS + average upstream natgas + grid electricity: 3.7 kgCO₂e/kg H₂
- + best practice for upstream natgas: 2.7 kgCO₂e/kg H₂
- + self-supply of H2
 electricity to ATR
 facility: 1 kgCO₂e/kg H₂

Environmental impact of hydrogen production

Production method	Inputs	Outputs	Lifecycle emissions intensity	Water intensity
Electrolysis	Water + electricity	Hydrogen	Low-medium	High
Steam methane or auto-thermal reforming	Water, natural gas, and electricity	Hydrogen, CO2 emissions	Design dependant	Medium-high
Methane pyrolysis	Natural gas	Hydrogen, carbon black	Low-medium	Low

Hydrogen distribution

Towards a new H₂ value chain

Hydrogen in Alberta today

- Alberta is a major, low-cost producer of hydrogen, making 2.4 MT H₂ per year for \$1-2 per kilogram
- Hydrogen is used currently in two main ways:
 - Key ingredient of ammonia used in fertilizer (NH₃)
 - Chemical for oil and gas refining/upgrading

Hydrogen distribution and storage

- Pipeline is by far the most economic way to transport hydrogen at scale
- Until pipelines are available, other methods may be used
 - Gaseous H2
 - Liquid H2
 - Liquid Organic Hydrogen Carriers (LOHC) e.g. Toluene
 - Other carriers, e.g. Methanol, Ammonia
- Will evolve as infrastructure develops
- Considerations
 - o Costs
 - Purity
 - Safety and Regulations (utility vs merchant pipelines, mobile trailers, fueling stations)

Distribution options

Hydrogen blending

- Use legacy infrastructure
- Up to 20% (about 8% emissions reduction)
- Stimulate demand quickly

Pure hydrogen pipelines

- Need all new infrastructure
- Three to four times additional to compress, move compared to natural gas

Accelerator

Need >1 tH₂ per day to be viable
 The Transition \$\rightarrow\$

Liquid hydrogen

- Energy intensive to liquefy
- Specialty cryogenic tanks
- Takes up three five times more space compared to diesel

 EMISSIONS

REDUCTION

L'Accélérateur de transition

Example: cost of delivered hydrogen

- Cost of production: \$1-2 in Alberta (currently)
 - Lowest in the world
 - Producing hydrogen from natural gas, even with carbon capture, is much cheaper than other methods
 - Hydrogen is inherently more expensive to produce than natural gas
- Cost of delivered hydrogen:
 - In BC, subsidized to about \$15per kgH2 at the pump (subsidized) → price competitive with gasoline on a per kilometer basis
 - Costs in Alberta for delivered hydrogen range \$15-70 per kgH2+, depends on (1) method of production, (2) method of delivery, (3) distance of delivery, (4) scale...

Hydrogen end use

Converting hydrogen into useful energy

• Fuel cells

Combines H₂ and O₂ from the air in an electro-chemical reaction (like a battery) to produce electricity, some heat, and water

Combustion

 Burn H₂ with O₂ from the air to produce heat, water, and byproduct NOx

Images:

https://www.electronicdesign.com/markets/automotive/article/21155025/electronic-design-theage-of-zero-emissions-heavy-duty-trucks-begins

https://www.nbmcw.com/equipment-machinery/construction-equipments/road-construction-equipment/200-000-hydrogen-engine-vehicles-to-be-sold-in-2035.html

Why start with hydrogen in transportation?

- Transportation has smallest gap between cost of hydrogen and fuel being replaced
- Transportation pilot projects can drive early demand for hydrogen at scale and unlock hydrogen for other sectors
- Need fueling infrastructure to build out transportation at scale

"Net zero" transportation options

• Alternatives:

- Electric vehicles
- Hydrogen fuel cell vehicles (also rely on an electric drive train)
- Hydrogen combustion
- Hydrogen dual fuel (co-combustion of diesel and hydrogen)
- Biofuels i.e. biodiesel, renewable natural gas

Applications:

- Trucks (everything from B-trains traveling cross country, to garbage trucks, etc.)
- Transit buses
- Trains (passenger and rail)
- Passenger vehicles
- Others (less relevant to Alberta): planes, shipping...

Transportation pilots:

- CP Rail Hydrogen Locomotive Conversions
- Alberta Zero-Emissions Hydrogen Transit
- <u>Diesel Tech Industries Dual Fuel Trucking Retrofits</u>

"Net zero" home heating options

Alternatives:

- Hydrogen
- Biofuels
- Electrification
- Pure hydrogen and/or electrification will ultimately require major infrastructure upgrades

Heat and electricity pilots:

- ATCO Fort Saskatchewan Hydrogen Blending Pilot
- Millennium Place Combined Heat & Power Project
- Bremner Feasibility Assessment 100% Hydrogen Community

Conclusion

- Strathcona County (and the general Edmonton region) have enormous advantages when it comes to hydrogen.
- The county is home to several world-leading, cutting-edge hydrogen pilot projects.
- These projects can de-risk broader deployment of hydrogen technologies in the county, Alberta, Canada, and the world!

Key resources

Recent ERA-Alberta Innovates hydrogen whitepapers:

- Research Reports Emissions Reduction Alberta (eralberta.ca)
- Alberta Low Carbon Hydrogen How Low Can it Go? and Hydrogen Exports: Gap Analysis

Other research reports:

- Alberta's Industrial Heartland Hydrogen Report
- Watersmart Regional Hydrogen Study

Other resources:

- •https://cice.ca/knowledge-hub/the-potential-for-methane-pyrolysis-in-b-c-new-report-released/
- *https://cice.ca/knowledge-hub/carbon-intensity-of-hydrogen-production-methods-report/
- •https://transitionaccelerator.ca/reports/towards-net-zero-energy-systems-in-canada-a-key-role-for-hydrogen/
- •https://transitionaccelerator.ca/reports/techno-economics-of-a-new-hydrogen-value-chain-supporting-heavy-duty-transport/
- https://www.alberta.ca/hydrogen-roadmap
- •https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office
- •https://www.pembina.org/reports/hydrogen-climate-primer-2020.pdf
- •https://www.pembina.org/reports/carbon-intensity-of-blue-hydrogen-revised.pdf
- •https://pubs.rsc.org/en/content/articlelanding/2022/se/d1se01508g
- •www.erh2.ca
- •https://erh2.ca/webinars/

